Heavy Metals Testing (COMPREHENSIVE ELEMENTS PROFILE)

Regular price £289.00

Tax included.

    Heavy Metals Testing (Heavy Metals & Nutrients - Comprehensive Elements) Profile is for 15 essential Elements as follows:

    • Iodine (I)
    • Bromine (Br)
    • Selenium (Se)
    • Arsenic (As)
    • Mercury (Hg)
    • Cadmium (Cd)
    • Creatinine (Crtn)
    • Lithium (Li) in Dried Urine spot and
    • Cadmium (Cd) 
    • Mercury (Hg) 
    • Lead (Pb)
    • Selenium (Se)
    • Zinc (Zn)
    • Magnesium (Mg)
    • Copper (Cu) in Dried Blood Spot
      • Test kit contains Blood and Urine Spot collection kit
      • Sample can be collected at the comfort of your home
      • Free delivery in the UK (International Delivery from £3.99)
      • Customers are responsible for shipment to laboratory. 
      • Test kit includes laboratory fee. No additional laboratory cost and tax.
      • Test Result: You will receive your test result via email within 3-5 working days after Laboratory receives your sample. On your test result you will see your hormone levels in graphics and numbers. You will also see Laboratory's comments by Hormone Specialist Phd Dr. on your test result which suggests a healthy diet, what kind of exercise you should do and some reading materials how to maintain your hormone level balanced. After receiving your test result we strongly suggest you to show it to your GP and see if you need any treatment or further action needs to be taken. 
      • Click to see>> SAMPLE TEST RESULT REPORT
        Heavy Metals Test Pack Includes:
        • Test Requisition Form includes Symptom Checklist
        • Requisition Form to complete including your personal and medical history
        • Contains collection instructions
        • Blood & Urine Collecting Cards (Dry Urine & Dry Blood Spot)
        • Instructions on How to Use Collection Kit
        • Return Envelope
        • Shipping Instruction
        Why the Focus on Elements?

        Getting too much, and sometimes too little, of various elements has consequences for our overall health. Who should consider heavy metals and essential elements testing? Anyone who:

        • Smokes
        • Has exposure to private well water or aging pipes
        • Is concerned about heavy metals in foods like vegetables, rice and seafood
        • Has mercury dental work
        • Lives in an older home or near an industrial area
        • Has thyroid-related health issues
        Why Test Both Blood & Urine?

        Heavy metals and essential elements affect different systems of the body, so it makes sense that they can’t all be measured in the same body fluid. ZRT tests using the most scientifically appropriate medium – either urine or dried blood spot – for our elements profiles.

        For example, urinary cadmium is the best measure of accumulated exposure, while blood spot assesses only recent exposure. Blood is the only appropriate medium to assess lead exposure, and urine is the only appropriate medium for arsenic.

        Dried Urine: ZRT’s dried urine method offers a discreet, at-home testing alternative and eliminates the hassles of all-day jug urine collection. Patients collect urine on a filter strip twice during the day. Dried strips are shelf-stable for 30 days and easy to mail back to the lab for analysis.

        Dried Blood Spot:  Allows testers to collect samples in the privacy of their own homes and is simple and nearly painless, avoiding a trip to the phlebotomist.

         HEAVY METALS & NUTRIENTS

        Heavy metal exposure is on the rise. Common sources include cigarettes, seafood, rice, well water, vaccinations & dental fillings. These toxic elements can significantly increase our risk of developing conditions like dementia, infertility, diabetes and cancer. They are also known to cause damage to the liver, kidneys and brain, as well as the cardiovascular, nervous and endocrine systems.

        Essential elements are abundant, too, and only healthy when they are within optimal ranges. Nutrients like copper, iodine, magnesium, selenium and zinc are critical for enzymes that synthesise neurotransmitters and activate hormones. Bromine and lithium, while not currently classified as “essential” elements, have been shown to play a positive role in health but are also potentially toxic at excessive levels.

        More Reading 

        Elements Testing - Why Sample Type Matters!

        How do you decide what biological sample(s) to use for element analysis? Can results be compared to scientific literature or do they have clinical significance? Is it possible for values to be elevated or low in one sample type and normal in another? Do test results indicate recent intake, body burden, acute toxicity, chronic toxicity, deficiency, or homeostatic regulation?

        These are just some of the questions facing a testing laboratory when they want to develop and validate essential and toxic element profiles that will provide clinically meaningful results.

        Most element panels commercially available today consist of 20-30 elements analyzed using a single sample type (most commonly urine or serum). It may seem like a reasonable one-stop-shop for element analysis, but this is not the case!

        Each element is unique in the way it is excreted, when it is excreted, and how results should be interpreted. The problem with testing a single sample type is that results may be meaningful for one element, and meaningless for another.  Our laboratory (ZRT) Laboratory prides itself in producing results with meaning, so instead of creating large element panels using a single sample type, we broke our element profiles up to test key toxic and essential elements in what we believe is the most clinically significant sample type.

        What we test and in which sample type

        Urine (Dried Urine) – Iodine, Bromine, Selenium, Arsenic, Cadmium, and Mercury (plus Creatinine to correct for urine dilution)

        Whole Blood (Blood Spot) – Zinc, Copper, Zinc/Copper Ratio, Magnesium, Selenium, Cadmium, Lead, and Mercury

        Taking each element in turn, here's the rationale for the choice of sample type.

        Iodine – Urine is the best indicator of recent dietary iodine intake, as >90% is excreted in urine. Nearly all iodine related studies published by major health organizations and independent research groups have used urine iodine to determine deficiency and excess in populations and recent intake in individuals. Serum iodine is sometimes used in hospitals as a quick screen to detect acute exposure, but this is not common.   

        Bromine – Urine is the best indicator of recent dietary bromine intake, as the majority is excreted in urine.

        Selenium – Urine is the best indicator of recent dietary selenium intake, as 50-70% is excreted in urine. Both whole blood and serum indicate current body selenium status, but whole blood is believed to reflect long term intake better than serum. The concentration of selenium in serum is about 80% of what you find in whole blood.

        Arsenic – Urinary arsenic is the best indicator of recent dietary intake, as 80% is excreted in urine after 3 days. Serum and whole blood are poor indicators of recent dietary intake or body status for arsenic as it is cleared rapidly within a couple of hours. Serum and blood should only be used to detect very recent or extremely high levels of exposure.

        Cadmium – Urinary cadmium is the best indicator of long term exposure to this toxic element.  Cadmium is concentrated in the kidneys and urinary levels represent cumulative cadmium exposure over the long term (it has a 30 year half-life). Whole blood cadmium levels reflect recent exposure within the last 50 days. Only about 0.01-0.02% of the total body cadmium burden is excreted every day because it accumulates primarily in the kidneys. Serum is a poor indicator of exposure because cadmium in the bloodstream binds to red blood cells, with erythrocyte concentrations 20 times higher than serum.

        Lead – Whole blood is the best indicator of lead status and the most commonly used sample for population and individual monitoring. Around 95% of lead is bound to red blood cells with the rest complexed with intracellular proteins. Lead in serum is only 1% of what is found in whole blood. Lead is excreted very slowly in urine, and is only of interest for long term occupational monitoring programs and chelation therapy.

        Mercury – Urinary mercury is the best indicator of inorganic and elemental mercury exposure and kidney burden. Whole blood is the best indicator of organic (methyl or ethyl) mercury exposure with 70-95% bound to hemoglobin in red blood cells and a half-life of around 50 days. Serum should not be used for mercury analysis.

        Zinc and Copper – Whole blood or serum can be used to assess zinc and copper. Zinc and copper are functional antagonists; therefore, the zinc/copper ratio should be determined, especially in cases where values of both border high and low normal ranges. Urinary zinc levels reflect recent intake, but studies have not been able to correlate urinary zinc to tissue concentrations. In normal people, less than 3% of copper intake is excreted in urine. Whole blood copper levels correlate better to symptoms of copper toxicity than serum, while whole blood zinc levels may better reflect intracellular and long term zinc status than serum.

        Magnesium – There is no simple laboratory test to indicate total body Mg status in humans. Less than 1% of body magnesium is found in blood, with approximately 0.3% in serum. Urinary magnesium reflects recent dietary intake and intestinal absorption, but is not commonly measured. Serum magnesium is commonly tested, but there is little correlation to total body magnesium or concentrations in specific tissues.  Serum magnesium levels are kept under tight homeostatic control, and are usually normal even when there is a nutritional magnesium deficiency because serum levels are raised at the expense of intracellular stores. Whole blood magnesium contains a high concentration of magnesium ions which are essential for many metabolic processes and better reflects long term body status.

        Examples

        • A patient regularly eats mercury-contaminated fish. Testing would potentially show low urinary and serum mercury, while whole blood tests would be high for mercury. This is because a majority of the mercury in fish tissue is methylmercury which can only be detected in whole blood samples.
        • A patient continuously drinks water contaminated with arsenic from a well. Testing would potentially show low whole blood and serum arsenic and high urinary arsenic. This is because arsenic is cleared rapidly in blood but is excreted over multiple days in urine.
        • A patient ceased smoking cigarettes (high source of cadmium) 6 months ago, but was a habitual smoker for 20 years. Whole blood and serum would potentially show low cadmium levels while urine tests high for cadmium. This is because whole blood represents recent cadmium intake and serum is a poor indicator of cadmium burden, while urine indicates long term cadmium exposure.

        As you can see, proper sample type matters when testing toxic and essential elements. In certain cases testing two sample types will provide a better picture of total exposure.